About the Workshop

Self-assembly is a process where pre-existing components form a structured system without external control due to the local interaction between the components. It is ubiquitous in many different fields like biology, chemistry, medicine, robotics and materials science. Self-assembly is a very important aspect in biological and robotics systems. Biological systems are inherently hierarchical, and as such self-assembly remains the critical process by which the fundamental units form into functional structures, that in turn form living organisms. A shining example of this is the fundamental building block of life, base-pairing with hydrogen bonds to make double-stranded DNA.

As the complexity of biological organisms is achieved from the self-assembly of nucleotides, self-assembly in robotics also presents a great opportunity for building functional systems. Robustness and reconfigurability has been a major objective for robotics researchers in recent years. Robust and reconfigurable systems offer improved systems, such as lower cost per unit as the individual requirements per robot is reduced, and a level of parallel redundancy that is not yet prevalent in robotics. Self-assembly lies at the intersection of biology and robotics, and it can help inform better robotics solutions.

This workshop aims to open a dialogue about self-assembly between researchers in biology and robotics. The workshop will be divided into two main sub-themes: (1) Self-assembly in biological systems and (2) Self-assembly in robotics. The workshop aims to bridge the gap between both sub-themes and foster collaboration between the two fields. The former sub-theme entails the most interesting aspects of biological self-assembly. The latter sub-theme entails challenges in self-assembling robots and how processes in biological systems can help improve the system design aspect of these robots.